
Designing SSI Clusters
with Hierarchical
Checkpointing and 
Single I/O Space

(SSI) in a workstation cluster. In a cluster
of computers, local area networks or high-
bandwidth switch networks using optical
fibers physically connect a collection of
node computers. The workstations in a
cluster can work collectively as an inte-
grated computing resource—that is, an
SSI—or they can operate as individual
computers, separately. 

Present clusters are usu-
ally small and provide only
limited SSI services. Future
clusters will likely increase
in scalability and offer more
SSI support, as Figure 1 il-
lustrates. The implication is
that future clusters could
replace the MPP, SMP, or
CC-NUMA architectures
(see “The cluster as a com-
puter architecture” sidebar
for key characteristics of
these computer platforms).

We focus on clusters

with high availability through SSI support,
distributed RAID (redundant arrays of
inexpensive disks) with parity checks, and
hierarchical checkpointing with adaptive
recovery. In particular, we developed a sin-
gle I/O address space among all disks and
peripheral devices attached in the cluster.
This enables direct remote disk access,
which is a necessary step to implement a
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Cluster Computing

T
he computing trend is moving from clustering high-end main-

frames to clustering desktop computers. This trend is triggered

by the widespread use of PCs, workstations, gigabit networks,
and middleware support for clustering.1 This article presents

new approaches to achieving fault tolerance and single system image 
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architectures.
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Different research groups have referred
to the term “clusters” as multicomputer
clusters,1 clusters of workstations (COW),2

or networks of workstations (NOW).3 To
compare clusters with other competing
computer systems, Table A summarizes
four major competing classes of com-
puter architectures. 

These classes include massively par-
allel processors, symmetric multi-
processors with shared memory, and
scalable multiprocessors having a cache-
coherent nonuniform memory access
architecture (CC-NUMA). Distributed
systems are the conventional network
of independent computers. Because
each node runs with its own operating
system, a traditional network of com-
puters has multiple-system images on
different nodes. 

An SMP server must have a single 
system image with a centralized shared
memory. In a cluster, having SSI across
all computer nodes is desirable.4 The
distributed systems and SMP are two

extreme architectures with respect to
SSI. The cluster, MPP, and CC-NUMA are
computer architectures between the
two extremes.5 Kai Hwang has accessed
various network technologies for build-
ing clusters.6

Internet-based metacomputing7 uses
a large number of remote hosts from the
Internet to form a supercluster. Any PC
or workstation user can utilize the super-
cluster’s resources. However, meta-
computing cannot be easily arranged
because of the ownership problem as-
sociated with scattered workstations and
PCs. Metacomputing demands even
more software support to manage and
coordinate the huge heterogeneous
computing  resources on the Internet  for
collective applications.  

References 
1. K. Hwang and Z. Xu, Scalable Parallel

Computing: Technology, Architecture,

Programming, WCB/McGraw-Hill, New
York, 1998.

2. G.F. Pfister, In Search of Clusters: The
Ongoing Battle in Lowly Parallel Com-
puting, 2nd ed., Prentice Hall PTR,
Upper Saddle River, N.J., 1998.

3. T.E. Anderson et al., “A Case for NOW
(Networks of Workstations),” IEEE
Micro, Vol. 15, No. 1, Feb. 1995, pp.
54–64.

4. G.F. Pfister, “The Varieties of Single-
System Image,” Proc. IEEE Workshop on
Advances in Parallel and Distributed
Systems, IEEE Computer Society Press,
Los Alamitos, Calif., 1993, pp. 59–63. 

5. M.A. Baker, G.C. Fox, and H.W. Yau,
Cluster Computing Rev. NPAC Tech.
Report SCCS-748, Northeast Parallel
Architectures Center, Syracuse Univ.,
Syracuse, N.Y., 1995.

6. K. Hwang, “Gigabit Networks for Scal-
able Multiprocessors and Multicomputer
Clusters,” Trans. Hong Kong Inst. of Eng.,
Vol. 2, No. 3, Dec. 1997, pp. 82–87. 

7. C. Catlett and L. Smarr, “Metacomput-
ing,” Comm. ACM, Vol. 35, No. 6, June
1992, pp. 44–52.

The cluster as a computer architecture

Table A. Key characteristics of scalable parallel computers.1

SMP,
CHARACTERISTIC MPP CC-NUMA CLUSTER DISTRIBUTED SYSTEM

Number 100–1000 10–100 100 or less 10–10,000
of nodes 
Node Fine or Medium or Medium grain Wide range
complexity medium grain coarse grain
Internode Message passing Shared memory Message passing Shared files, RPC,
communication or shared variables message passing

for DSM IPC protocol
Job Single-run queue Single-run queue Multiple queues Independent
scheduling at host mostly multiple queues
SSI Partially Always in SMP Desired No
support and some NUMA
Node OS N microkernels and One monolithic OS N OS platforms N OS platforms 
copies 1 monolithic OS for SMP, multiple (homogeneous (heterogeneous)
and type at host OSs for NUMA or microkernel)
Address Multiple Single Multiple Multiple
space (single for DSM) or single
Internode Unnecessary Unnecessary Required Required
security if exposed
Ownership One One One or more Many

organization organization organizations organizations
Network Nonstandard Nonstandard Standard Standard
protocol
System Low to Low for SMP Highly available Medium
availability medium higher for NUMA or fault tolerant
Performance Throughput and Turnaround Throughput and Response
metric turnaround time time turnaround time time

.
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reliable cluster of workstations or build
robust PC clusters.

SSI and availability 

A cluster should have SSI and availability
supported by middleware between the
node OS and user application environ-
ment. The middleware consists of essen-
tially two layers of software, which glue
all node OSs together to establish SSI and
enhanced availability. The availability
infrastructure enables the cluster services
of checkpointing, automatic failover,
recovery from failure, and fault-tolerant
operation among all cluster nodes.

The SSI layer supports collective clus-
ter applications, which demand opera-
tional transparency and scalable perfor-
mance. The clusters offer SSI at a wide
range of abstraction levels. At one ex-
treme, a cluster can function as a tightly
coupled SMP, NUMA, or MPP system;
at the other extreme, it can behave like
distributed computer systems with mul-
tiple system images.

DESIGN GOALS
Cluster design goals commonly focus on
complete transparency in resource man-
agement, scalable performance, and en-
hanced availability in supporting user
applications.

Complete transparency
The SSI layer should let the user see a
single cluster system instead of a collec-
tion of independent nodes. For example,
in an SSI cluster with a single entry
point, users can log in from any node.
The needed software is stored on one
node only. In a loosely coupled network
of computers, users must install the same
software for each node. To achieve com-
plete transparency in resource allocation,
deallocation, and replication, the imple-
mentation details should be invisible to
user processes. 

To have a single entry point, when a
user telnets and ftps to the cluster, the
two sessions should see the same home
directory. The user wants to use a single
file hierarchy, but the way the file sys-
tem is physically organized in the backup
storage is transparent to the user. The

file system can be mounted from a cen-
tral file server or fully distributed among
many nodes, and a file can be duplicated
in several nodes. When a node fails, the
portion of the file system can migrate to
another node.

Scalable performance
The scalability is related to the cluster’s
performance. An efficient cluster should
not be limited in physical size and load-
ing pattern. When a node is added to a
cluster, the protocol and API (application
programming interface) need not change.
The cluster’s performance should scale
with more nodes allocated, and the SSI
services must include load balancing and
parallel support. For example, a single
entry point should distribute a login
request to the least-loaded node. Cluster
efficiency also demands that all SSI ser-
vices have small overheads. The time to
execute the same operation on a cluster
should not be much longer than that on a
single workstation. 

Enhanced availability
In a cluster, the SSI services should be
highly available at all times. Any single
point of failure should be recoverable
without affecting a user’s applications. So,
high availability should employ check-
pointing and fault-tolerant technologies
to enable rollback recovery.  A fault-toler-
ant cluster automatically demands the fea-
tures of hot standby, failover, and failback
services after a node failure. Hot standby
refers to the situation that a primary node
provides the service, while a back-up node
stands by without doing any work. The
standby node is ready to take over the
work as soon as the primary node fails.
Failover means that the surviving nodes
take over the services originally provided
by the failed node. Failback allows the
failed node to rejoin the workforce after it
is repaired. 

Replicating resources creates a consis-
tency problem—for example, with file-
system coherency and shared-memory
consistency. When the cluster performs
multiple operations, it should be able to
keep the duplicated data objects consis-
tent. Critical section resources must be
properly locked or protected to achieve

data integrity. Other availability issues
include security and data encryption to
protect access to cluster resources.

DESIRED SERVICES AND FUNCTIONS
We first identify all useful SSI services
and availability functions. An example
cluster configuration illustrating the key
concepts follows.

SSI services
The following fundamental services
stretch along different dimensions of the
application domain, yet the services are
mutually supportive.

• Single entry point: A user logs in to the
cluster as a single system (for exam-
ple, telnet cluster.mycompany.com), in-
stead of logging in to individual nodes
as in a LAN (local area network) envi-
ronment (for example, telnet node1.
cluster.mycompany.com).

• Single file hierarchy: Once logged in,
the user sees a single hierarchy of file
directories under the same root direc-
tory, just like a single file-manage-
ment environment for workstation
users. Examples of single file hierar-
chy include NFS (network file sys-
tem), AFS (Andrew file system), xFS
(serverless file system), and Solaris
MC (multicomputer) Proxy.2

• Single control point: The entire cluster
is managed from a single place using
a single GUI tool, much like the IBM
AIX workstation managed by a spe-
cial software package called SMIT.

• Single virtual networking: Any node
can access any network connection
throughout the cluster domain. Mul-
tiple networks support a single virtual
network operation.

• Single memory space: This service gives
users the illusion of distributed shared
memory over local memories physi-
cally distributed over the cluster nodes.
Distributed shared memory enables
shared-variable programming. Tread-
Marks3 gives the best example of soft-
ware-implemented DSM. 

• Single job-management system: Under
a global job scheduler, a user job can
be submitted from any node to re-
quest any number of host nodes to

.
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execute it. Concurrent job schedul-
ing is possible in batch, interactive,
or parallel modes. Examples of job-
management systems for clusters
include GLUnix (Global Layer
Unix),4 LSF (load-sharing facility),5
and Codine (http://www.genias.de/
genias/english/codine/Welcome.html).

• Single user interface: The users should
be able to use the cluster through a
single graphic interface. Such an
interface is available for workstations
(for example, the Common Desktop
Environment) and PCs (for example,
Microsoft Windows 95). To develop
a cluster GUI, you can use Web
technology.

AVAILABILITY SUPPORT FUNCTIONS
Listed below are three desired features
to enhance the availability of clusters of
workstations or PC clusters: 

• Single I/O space: This function allows
any node to remotely access any I/O
peripheral or disk devices without the
knowledge of their physical location.
In our SIOS design, all distributed
disks, RAIDs, and devices form a sin-
gle address space. 

• Single process space: This requires mu-
tual understanding between processes
created in the same address space.
They share a uniform process-identi-
fication scheme. A process on any
node can create (for example, through
a Unix fork) or communicate with (for
example, through signals or pipes) any
other process on a remote node. 

• Checkpointing and process migration:
Checkpointing is a software mecha-
nism to periodically save the process
state and intermediate computing
results in memory or on disks. This
allows rollback recovery after a fail-
ure. Process migration is needed in
dynamic load balancing among the
cluster nodes and in supporting
checkpointing. 

A CLUSTER EXAMPLE
Our example cluster has four host nodes,
two of which are connected with I/O
devices attached. A properly designed
cluster should behave like one single sys-

tem. In other words, it behaves like a
giant workstation with four network
connections and four I/O devices
attached. Any process on any node can
use any network and I/O devices, such
as RAIDs or CD-ROM drives.

This cluster is a Web server. The Web
information database is distributed be-
tween two RAIDs. An HTTP daemon is
started on each of the nodes to handle the
Web requests, which come from four dif-
ferent network connections to the four
nodes. The SIOS implies that any node
can access the RAIDs. Suppose most
requests come from an ATM network. It
would be beneficial if we could distribute
the http functions to all four nodes.

For single point of control, the system
administrator can configure, monitor, test,
and control the entire cluster and each
individual node from a single point. Many
clusters achieve this through a system con-
sole that connects to all cluster nodes. The
system console normally connects to an
external LAN so that the administrator
can remotely log in to the system console.
Single point of control does not mean that
the system console solely carries out all
system administration work. Instead, the
entire cluster is managed from a single
place using a single GUI tool.

Middleware support for
SSI and availability
Cluster design concerns size scalability,
enhanced availability, system manage-
ability, fast message passing, security and
encryption, and distributed computing

environments. Table 1 summarizes four
representative middleware packages for
SSI and availability support. GLUnix is
available in the public domain, and the
other middleware packages are com-
mercial products. The first seven fea-
tures support SSI services, the next eight
features facilitate job management and
parallel programming, and the remain-
ing four features are for availability and
fault tolerance.

Batch support refers to the dedicated
use of cluster resources by a single user
job in a batch mode. Interactive support
refers to the time-sharing use of cluster
resources by multiple users simultane-
ously. Parallel support refers to the man-
agement of parallel processes and MPI
and PVM environments. So far, none of
the four middleware packages have
implemented SIOS and single network-
ing features.

Process migration is needed to
achieve dynamic load balancing among
cluster nodes. The process running on a
failing host can be switched (failover) to
a surviving host in the cluster. Process
migration enables load distribution, fault
resilience, system administration, and
improved data-access locality. Migrating
processes from overloaded nodes to
lightly loaded ones can achieve load dis-
tribution. Migrating processes from
nodes that might have partial failure can
achieve fault resilience. 

Job monitoring, suspend/resume,
dynamic resources, and user interfaces are
useful features that provide a user-friendly
environment in program debugging, 

Table 1. Four middleware  packages for SSI and availability services.

SUPPORT FEATURES GLUNIX TREADMARKS CODINE LSF

Single control point Yes No Yes Yes
Single entry point Yes No No No
Single file hierarchy Yes Yes Yes Yes
Single memory space No Yes No No
Single process space Yes No No No
Single I/O space No No No No
Single networking No No No No
Batch support Yes No Yes Yes
Interactive support Yes Yes Yes Yes
Parallel support Yes Yes Yes Yes
Load balancing Yes No Yes Yes
Job monitoring Yes No Yes Yes
Suspend/resume No No Yes Yes
Dynamic resource Yes No Yes Yes
User interface cmd-line cmd-line GUI/cmd-line GUI
Checkpointing No No Yes Yes
Process migration No No Yes Yes
Security standard Unix Unix Kerboros Kerboros
Fault tolerance Yes No Yes Yes

.
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performance evaluation, resource alloca-
tion, and program optimization. Fault tol-
erance and checkpointing are features to
enhance cluster-system availability. To
achieve transparency, the job-manage-
ment system should be able to reconfig-
ure the cluster dynamically with minimal
impact on the running jobs.

The functionality of a job-manage-
ment system is often distributed. For
instance, a user server can reside in each
host node, and the resource manager can
span over all the cluster nodes. The sys-
tem can migrate processes from the nodes
that are about to be shut down so that the
system administrator doesn’t need to wait
until a user logs out. Migrating processes
toward the source of the data can also
improve the data-access locality.

GLUNIX AT BERKELEY
GLUnix can be easily downloaded to any
cluster through the public domain. This
global layer provides an SSI of the nodes
in a cluster so that all of the processor,
memory, network capacity, and disk
bandwidth can be allocated for sequen-
tial and parallel applications. The global
layer is realized as a protected, user-level
operating-system library that is dynam-
ically linked to every application. The
library intercepts all system calls and rec-
ognizes them as procedure calls.

The GLUnix package has three dis-
tinct advantages: 

• Implementing and modifing its source
code at the user level is easy. 

• It supports coscheduling of parallel
programs, idle-resource detection,
process migration, load balancing,
remote paging, and some availability
support. 

• It was designed to port to any OS that
supports interprocess communica-
tion, process signaling, and access to
loading information.

TREADMARKS AT RICE
To enable shared-memory computing on
Norma (no remote memory access) and non-
CC-NUMA systems, researchers have
proposed the software-coherent NUMA
memory model, also known as the DSM
model. The TreadMarks project at Rice
University3 has developed a runtime
library of software routines to implement
DSM with a single address space, data
sharing, and memory consistency over a
cluster of Unix workstations. 

CODINE AND DQS
The Codine package evolves from the
Distributed Queuing System (DQS) cre-
ated at Florida State University. Codine
is offered by Genias Software GmbH in
Germany. Genias claims that this pack-
age has become a de facto job-manage-
ment system in Europe. The major
strength of Codine lies in hardware and
software resource management in a het-
erogeneous networked environment.
Codine uses GUI tools to provide a SSI
of cluster resources. Checkpointing is
supported only if the kernel supports it.
Kernel-checkpointed jobs can migrate,
and resources can be dynamically added
or deleted from a resource pool.

LSF 
The LSF package from Platform Com-
puting evolves from the Utopia system
developed at the University of Toronto.
LSF emphasizes job management and
load sharing of both parallel and sequen-
tial jobs. In addition, it has support for

checkpointing, availability, and load
migration. LSF has been implemented
on various UNIX and Windows/NT
platforms.5 Checking the entries in Table
1, Codine and the LSF are almost equally
capable in supporting the same SSI and
availability functions.

MIDDLEWARE PACKAGES FOR
CLUSTERS
In Figure 2, we show the functional rela-
tionships among six key middleware
packages. These middleware packages
are used as interfaces between user appli-
cations, cluster hardware, and the OS
platform. They support each other at the
management, programming, and imple-
mentation levels. 

The job-management system is es-
sentially a global job scheduler. The sin-
gle file hierarchy and DSM support dis-
tributed file management and shared-
memory programming. The single pro-
cess system, checkpointing, process
migration, and SOIS help implement
the job-management system, single file
hierarchy, and DSM services.

All middleware packages work to-
gether to support the desired availabil-
ity and SSI services. The SIOS module
enables the efficient implementation of
DSM, single file hierarchy, and check-
pointing/process-migration functions. 

Distributed RAID and
cluster architectures
Here we assess three architectural design
options for enhancing the availability
and fault tolerance of a cluster of work-
stations or PCs.

RADD
M. Stonebraker and G. Schloss first pro-
posed the Redundant Arrays of Distrib-
uted Disks architecture as a multicopy
algorithm for distributed RAID sys-
tems.6 All local disks, attached to differ-
ent cluster hosts, logically form the
RADD subsystem. Normally, it stores
the checkpointing data in local disk
blocks sequentially, while parity blocks
reside in other local disks. 

Among different nodes, the RADD
applies the RAID-5 algorithm to handle

User applications

Job management system
(GLUnix, LSF, CODINE)

Management
level

Programming 
level

Implementation level

Single file hierarchy
(NFS, AFS, xFS, Proxy)

Distributed shared memory
(TreadMarks, Wind Tunnel, and so on)

Single process space Checkpointing/
process migration

Single I/O space

Cluster hardware and OS platform

Figure 2. Relationships among middleware modules for clusters.

.
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local I/O operations, which are trans-
parent to higher-level RADD opera-
tions. For simplicity, you can readily
apply the RAID-1 architecture on local
disks. RADD implements mirroring on
neighboring disks, but there is no parity
among the distributed local disks. 

NASD
Network-Attached Secure Disks7attach the
RAIDs directly to the network as a sta-
ble storage to allow shared access by all
cluster nodes. Each workstation node in
the cluster might or might not have a
local disk attached to it. Even with
locally attached disks, the nodes buffer
the data retrieved from the NASD. The
NASD supports independent accesses
by all nodes. Thus, a specially designed
NASD controller must resolve the ac-
cess conflicts.

The NASD architecture is quite dif-
ferent from the server-attached RAID.
In the latter case, block data transfer
must be done through the network
server instead of directly from the net-
work to end users at local workstations.
NASD improves its scalability by remov-
ing the bottleneck problem from the net-
work server. A technique called network
striping makes this possible.8

CHECKPOINTING CLUSTER
ARCHITECTURE
Figure 3 illustrates the checkpointing
cluster architecture we originally pro-
posed at the University of Hong Kong
and have continued to study at the Uni-
versity of Southern California. The clus-
ter nodes are either workstations or PCs.
A Gigabit LAN or a SAN (system area
network)1 connects all the nodes, and
local disks are attached to each worksta-
tion node. Each local disk is accessible
only from its own attached host, and all
the local disks form a RADD. 

The network-attached RAIDs form a
NASD as the stable storage for imple-
menting various checkpointing schemes.
We use independent checkpointers over
the coordinated ones to reduce the
checkpoint overhead and recovery
latency. This cluster design’s uniqueness
lies in its distributed-checkpointing
RAID architecture. It is based on the

three-level adaptive recovery scheme
and the SIOS we propose in this article.

Hierarchical
checkpointing schemes
We apply three checkpointers for de-
signing checkpointing schemes. In these
schemes, mirroring is applied to reduce
the probability of rolling back to the sta-
ble storage. The three types of check-
pointers are

• 1-checkpointer (local-disk checkpointer):
The processes periodically store
checkpoints in their own local stor-
ages. This type of checkpointer can
tolerate only a transient processor
failure. When a permanent processor
failure or a local disk failure occurs,
the local disk is inaccessible and the
1-checkpointer is lost. The 1-check-
pointer can be implemented in either
coordinated or independent check-
pointing schemes.

• M-checkpointer (mirrored checkpointer):
The processes periodically save con-
sistent checkpoints to their local disks
and copy the mirrored images to their
neighbor’s disk. This type of check-
pointer can tolerate single failures and
multiple, isolated, permanent failures. 

• N-checkpointer (stable-storage check-
pointer): The processes periodically
save consistent checkpoints on the
stable storage. Because stable storage
is assumed to be failure-free, this type
of checkpointer can tolerate any
number of failures.

ADAPTIVE RECOVERY LEVELS
Our checkpointing schemes offer adap-
tive two- or three-level rollback recov-
ery with a reduced recovery latency. Fig-
ure 4 illustrates the recovery at three
levels. The three levels of rollback recov-
ery are

• Level 1: Rollback to a 1-checkpoint,
when a processor has a transient fail-
ure that does not immediately follow
an M-checkpoint or an N-check-
point.

• Level 2: Rollback to an M-checkpoint,
when a node has a permanent failure,
assuming no adjacent failures occur
and they do not follow an N-check-
point.

• Level 3: Rollback to the stable storage
checkpoint (N-checkpoint), when a
failure occurs immediately following
an N-checkpoint or when a processor
or a local disk has a permanent failure
and loses its mirrored checkpoint.

In the worst case, the loss of useful
computation for a level-two recovery is
mT, while that for a level-three recovery
is mnT, where T is the checkpointing
period. With a much higher recovery
latency contingent on network latency
and simultaneous access of the central
stable storage, the level-three recovery
latency should be much larger than the
level-two recovery. This reduces the
probability of an N-rollback to the sta-
ble storage. The level-two recovery can
shorten the expected recovery latency
significantly, if properly implemented.

. . .

RAID

High-speed switching network (SAN or LAN)

LAN
NAP 
NASD
RADD
RAID Redundant arrays of inexpensive disks
SAN System area network

Local area network
Network attached peripherals
Network attached secure disks 
Redundant arrays of distributed disks

All local disks forming a RADD

(Mirrored checkpointers)

RAID
Workstations

or PCs

. . . NAP

Figure 3. A fault-tolerant cluster architecture with distributed local disks
(RADD), network-attached secure disks (NASD), and network-attached
peripherals (NAP) forming a single I/O space. 
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CHECKPOINTING SCHEMES
Checkpointing schemes can be imple-
mented with one to three levels of re-
covery. The simplest single-level check-
pointing scheme involves remote
memory or local disks. J.S. Plank and his
colleagues developed diskless check-
pointing in remote memory.7 Alterna-
tively, you can save the 1-checkpointer
periodically on a local disk. The major
drawback of this one-level scheme is its
limited fault coverage. A single perma-
nent failure will paralyze the node by los-
ing the checkpoint file, preventing any
chance of a rollback recovery.

N.H. Vaidya proposed a two-level
recovery scheme that can tolerate a local
disk crash because of the allowed roll-
back to an N-checkpointer in a stable
storage.9 The major drawback is its large

N-checkpoint overhead and recovery
latency. While the recovery latency of
this two-level rollback scheme improves
sharply over the one-level scheme, we
introduce the M-checkpointer to imple-
ment improved two-level or three-level
schemes.

The M-checkpointer tolerates at least
single processor failure, and it can poten-
tially tolerate conditional multiple per-
manent failures, corresponding to the
scenario in which failures do not occur
between mirrored workstations. If the
above condition is satisfied, no check-
point file is lost and the spare worksta-
tion can be used to have a full recovery. 

For a cluster of N workstations, the
M-checkpointer can tolerate at most N/2
permanent failures. The M-check-
pointer has a latency between the other

two checkpointers. The idea is to save
every mth checkpoint as an M-check-
point and/or every mnth checkpoint as
an N-checkpoint. Figure 5 shows the
timing charts of two hierarchical check-
pointing schemes. The checkpointer
overhead corresponds to the bar width
in the charts.

Scheme A involves two-level inter-
leaved mirror and stable checkpointing.
It saves the M-checkpoints in mirrored
disks and N-checkpoints in the stable
storage (see Figure 5a). Every mth con-
sistent checkpoint is stored in the stable
storage, while all other checkpoints are
stored in local memories (instead of local
disks) with a mirrored image on a neigh-
bor’s disk. This scheme rolls back to a
local memory for transient failures. 

For permanent failures, the scheme
rolls back to a mirrored copy of the
checkpoint. It rolls back to the stable
storage only when a permanent failure
immediately follows an N-checkpoint.
This scheme provides the lowest recov-
ery latency.

Scheme B involves three-level adap-
tive checkpointing and recovery. Figure
5b illustrates this scheme, in which the
host processor periodically saves the 1-
checkpoints in local disk. It saves every
mth checkpoint as an M-checkpoint. It
stores every mnth consistent checkpoint

Execution begins

(a)

T T

Execution begins Execution ends

T T T

(b)

T T T T TT

Figure 5. Two hierarchical checkpointing and recovery schemes (T = checkpointing period): (a) Scheme A: two-level
mirror and stable checkpointing recovery; (b) Scheme B: three-level adaptive checkpointing. 

Rollback to 1-checkpoint

T Failure

Rollback to N-checkpoint

Rollback to M-checkpoint

Execution ends

Stable N-checkpoint M-checkpoint Local 1-checkpoint

Figure 4. Adaptive rollback recovery at three levels in the distributed cluster
disk hierarchy.
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on the stable storage, while saving all
other checkpoints on local disks.

OVERHEAD VERSUS LATENCY
Denote P1, PM, and PN as the probabili-
ties of rolling back to a 1-checkpoint, an
M-checkpoint, and an N-checkpoint.
Let C1, CM, and CN be the correspond-
ing checkpointing overheads. Let R1,
RM, and RN be the repeated computation
times. Finally, let L1, LM, and LN be the
total recovery latencies, respectively. Let
T be the fixed time interval when coor-
dinated checkpointing is employed. We
know that, within a given time interval,
the following inequalities hold: C1 < CM
< CN , P1 > PM > PN , and L1 < LM < LN.

The situation is similar to a two- or
three-level memory hierarchy (cache, L2
cache, and main memory), with P anal-
ogous to the hit ratio and R analogous to
the memory-access latency. On the aver-
age, a multiple-level checkpointing and
recovery scheme can achieve shorter
latency over the single recovery scheme,
because it makes the common case fast.

The insertion of the M-recovery
reduces the probability PN of invoking
an N-recovery significantly. For exam-
ple, let p = 0.01 be the probability of a
permanent failure within a given time
interval and n = 8 between two adjacent
N-checkpoints. A permanent failure re-
quires a rollback to an N-checkpoint
with a probability PN = 1 − (1 − p)n = 1 −
0.998 = 0.077. With the M-recovery,
only the scenario with permanent fail-
ures that are adjacent require a rollback
to an N-checkpoint. Thus, the probabil-
ity PN = 1− (1 − p2)n = 0.00079, about two
orders of magnitude smaller. In general,
adding the level of M-checkpoint recov-
ery reduces PN by at least two to three
orders of magnitude.

We calculate the total expected recov-
ery latency as P1 L1 + PM LM + PN LN,

where P1 + PM, + PN = 1. In Table 2, we
show the two formulae for Schemes A
and B. 

Consider a program of a total execu-
tion time G = 20 hours. Assume the fol-
lowing parameter values based on past
experience: T = 5 minutes, C1 = 10s, R1 =
15s, CM = 25s, RM = 15s, CN = 15Ns, RN =
15Ns, m = 8, n = 4, and p = 0.02, where s
stands for second. The checkpointing over-
head percentage is the percentage of the
total checkpointing overhead over the
total execution time without failure. Fig-
ure 6a plots the COP of the two check-
pointing schemes for clusters, with N
ranging from 8 to 128 nodes.

Scheme A saves mostly the mirrored
checkpoints and has a higher COP than
that of scheme B. In both schemes, the
COP increases steadily with respect to
the cluster size. Figure 6b compares the
expected recovery latency of the two
recovery schemes in the worst case.
Scheme A has a shorter recovery latency,
because rolling back to an M-checkpoint
at the neighboring disk is much faster
than rolling back to an N-checkpoint. All
latencies are independent of the total
execution time G. 

Scheme B takes slightly longer than
Scheme A to recover from a failure. This
is because Scheme B takes longer to
recover from an M-checkpoint, as
revealed in the LM term. For large clus-

ter sizes, Schemes A and B perform
almost equally, because PM  increases
faster in Scheme B than in Scheme A, as
the machine size increases to 128 nodes.

All previous studies have shown that
writing the state of a process to stable
storage contributes the most to the total
latency. The simplest way to save the
process state is to suspend it, save its
address space on storage devices, and
then resume it. This scheme can be
costly with M-checkpointing and N-
checkpointing programs with a large
address space. 

Concurrent checkpointing10 does not
suspend the execution of the process
while the checkpoint is saved on the stor-
age devices. It relies on the memory-pro-
tection hardware that is commonly avail-
able in a modern computer. Adding
incremental checkpointing can further
reduce the overhead. Incremental check-
pointing avoids rewriting portions of the
process states that do not change be-
tween consecutive checkpointings. 

Single I/O space design

Sun Microsystems has extended the Solaris
OS for clustering Sun workstations. This
extension is called Solaris MC. They use a
uniform device-naming scheme to achieve
SIOS in addressing any peripheral or disk
devices attached to a Unix cluster of Sun
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Figure 6. (a) Checkpointing overhead and (b) recovery latency between two
schemes.

Table 2. The upperbound on the expected recovery latency for Schemes A and B.

SCHEMES UPPER BOUND

Scheme A P1(R1 + T + C1) + PM (RM + T + CM ) + PN (RN + m(n − 1)C1 + (m − 1)CM + CN + mnT))

Scheme B P1(R1 + T + C1) + PM (RM + (m − 1)C1 + CM +  mT) + PN (RN + m(n − 1)C1 + (m − 1)CM + CN + mnT )

.
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workstations. A device address consists of
a node number and the device number. A
process can access any device by initiating
a system call at a remote processor using
this unique address. We consider the
Solaris MC definition of SIOS a rather
restricted one because it only accesses
remote devices at the file level, not at the
block or strip levels.

We developed a new SIOS concept.11

SIOS is designed over all local disks,
RAIDs, and I/O peripheral devices. We
must consider hardware, software, and
middleware requirements in the SIOS
design, which must make remote access
transparent without resorting to system
calls. A local host, rather than the remote
host, initiates the addressing process of
remote devices. We implement SIOS
primarily at the user level, but we must
modify some local OS system calls to
enable the remote disk accesses.

ADVANTAGES OF THE SIOS
APPROACH
Extending the SIOS design has four
advantages. First, SIOS addressing
eliminates the gap between accessing
local disk and remote disks. Remote-
disk access does not have to be handled
as system calls from the remote host.
Instead, the local host can address the
remote disks directly by a modified sys-
tem call.

Second, SIOS supports a persistent
programming paradigm. DSM and SFH
can be more easily implemented with the
SIOS. All device types and their physi-
cal locations are now transparent to all
users. MPI-based I/O currently cannot
achieve this transparency.

Third, SIOS allows striping on re-

mote disks, which accelerates parallel
I/O operations often needed in moving
large data files among the cluster nodes.

Finally, SIOS greatly facilitates the
implementation of the distributed check-
pointing and recovery scheme we sug-
gested earlier. Mirroring on remote disks
becomes faster and easy to control, and
recovery from the shared RAIDs or
NASD requires less time than current
systems without SIOS.

THE SIOS DESIGN AT USC AND
HKU
As Figure 7a shows, the integrated I/O
address space covers n local disks, m
shared disks in the RAID, and h peri-
pheral devices. The sequential address
space is essentially a single, large, linear
array of addresses down to the disk-block
level or to the device-number level. For
simplicity, we consider t blocks per local
disk and k blocks per disk in the RAID.
All the NAP devices are assigned high-
order addresses in the linear array. These
high-order addresses preserve the uni-
form naming scheme built in the Solaris
MC.

Data mapping onto the distributed
local disks uses parity blocks, mirror-
ing, or shadowing. To improve the effi-
ciency of I/O access, it stores user data
sets on local disks and stores check-
pointing or parity information on one
or more remote disks. It also assumes
sequential addresses horizontally in
each local disk (LDi) (see Figure 7a) and
interleaves addresses in the shared
RAID disks horizontally across the ver-
tical disks (SDj) in the RAID array.
Hardware, firmware, or software can
implement this address scheme.

ADDRESSING AND MAPPING
MECHANISMS
Figure 7b shows the middleware func-
tional modules needed to implement the
SIOS for a cluster of workstations. The
name agent maps the name known to the
I/O agent onto the unique device number
known to the Disk/RAID/NAP mapper.
The mapper uses striping and replication
to implement the address mapping. 

The block mover copies data to and
from the storage media and transmits the
data from a source to a destination. Each
I/O agent performs the I/O operations
according to the I/O type. Multiple I/O
agents interface local disks, NASD, or
peripheral devices. The agents receive
the I/O command from the mapper or
block mover. The agent performs low-
level I/O operations under the control
of the local system call.

The user-level agents and functions
can be written as Java processes, which
facilitates the porting to various host plat-
forms. The system call for remote-disk
access requires changing the page-fault
mapping table in the kernel. In an exper-
imental cluster at USC, we modify the
device-relevant system calls in Linux to
run on Pentium-based PC hosts. The
mapper, the mover, and various agent
routines form the SIOS middleware
package. We aim to make the SIOS pack-
age portable to all major OS platforms.

CLUSTERS OF WORKSTATIONS or PC
clusters are bound to become commod-
ity products in the computer industry.
However, the major difficulty in clus-
tering lies in the lack of adequate SSI
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software support. To build multicom-
puter clusters with SSI, efficient mecha-
nisms or protection schemes are needed
for global interprocess communication
and for global security control without
access conflicts or unauthorized access
of shared resources in the cluster. 

We need a dynamic mechanism to
effectively manage the fast-changing
cluster environment. The need for load
balancing and process migration add
another dimension to the challenge in
clustering multiple computers. In the
industrial track, Wolfpack for Intel-
based Windows NT servers, Berkeley
NOW, and Solaris MC for Unix work-
stations are all aimed at high availability,
scalability, and manageability. 

The rapid growth in multimedia and
WWW applications has further in-
creased the demands on clustered and
network-based platforms. These appli-
cations demand higher computing power
and communication bandwidth, more
flexible control of the cluster resources,
and higher availability and fault toler-
ance. SSI clusters or robust clusters will
efficiently meet these requirements.

Java-based intelligent agents are also
suitable for distributed cluster comput-
ing. This applies especially to distributed
financial computing, information retrieval
in digital libraries, and electronic business.
Furthermore, PC or workstation clusters
demonstrate potential for large-scale
database-search or data-mining applica-
tions. Robust clusters will be more cost-
effective for bioinformatics, telemedicine,
telemarketing, data warehousing, and dis-
tance learning than are today’s main-
frames or supercomputers. 
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